Modern agricultural tractors contain so much cutting-edge technology, they rival even the latest spacecraft. But the back end is still old-school, relying largely on fossil fuels. So any optimization in tractor efficiency is a huge win for the environment.

With this in mind, Purdue University researchers have undertaken a $3.2 million Department of Energy project to optimize the hydraulic systems that connect tractors and implements.

“Fluid power is everywhere,” said Andrea Vacca, Purdue’s Maha Fluid Power Faculty Chair, professor of mechanical engineering and agricultural and biological engineering, and director of the Maha Fluid Power Research Center, the largest academic hydraulics lab in the country. “It’s used in airplanes, in cars, and in all kinds of heavy equipment. A tractor is an example of a vehicle that uses fluid power to actuate everything from the steering and propulsion, to powering the implements it pulls behind it.”

But powering the implements has proven to be a problem. The hydraulic control system of the tractor has shown only 20% efficiency when connected to the hydraulic systems of certain implements like planters, seeders and bailers.

“There’s a conflict in the controls, where the two systems are almost fighting each other,” said Patrick Stump, a Ph.D. student in mechanical engineering. “As a result, when it’s connected to a planter, the tractor always has to run at extremely high power, which wastes fuel and increases emissions.”

In this study, funded through the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, Vacca’s team focused its attention on a specific combo of tractor and planter, both provided by Case New Holland Industrial, with hydraulic systems provided by Bosch Rexroth. See video.

The planter is 40 feet wide, with 16 planting rows.

Read more: Tractor efficiency increased, thanks to Purdue hydraulics research